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Enersy spectrum of the potential V' = ax*+x*

S C Chhajlany, D A Letovs and V N Malnes:

Phvsics Department, Addis Ababa LU npversity, oy 3281, Addis Ababa, Ethiopa
Recenved 29 Ocrober 1990 1n iinal totm 20 | ebruarny 1991

Ahstract Suntabie sequences of quasi-¢ sactly sehable Hamiftomans are shown to provde
stringent upper bounds to the energy eigenvalues ot the bound state potental b = av ~ v
Procewutes ta comvert these bounds 1nto even further mmprosed energs estimutes are
ueveloped Forthe quartic anharmoeme oscllator tg (1 case a ssmple argument is provided
o ndicate that the comventonal small-parameter energy expansien does not comverge ds
4 Tavlor senes An accurate dosed form parametrization of the entire quartic (v
spectrum 15 noted The energy difierence betw een the lowest-luing levels of a quartic double
well ta 01s satisfactonly recovered and for deep wells o useful expression ts deduced
far « einpirically

1. Introducticn

Power law potentials, anharmomc oscillators and multiple-well potentials continue to
remain a focus of attention in non-relativistic quantum mechames The real challenge
1s the lack of an adequately powerful umversal approach for solving muiltiple-term
recurston relations Although enormous progress has been made over the years 1n our

nndarctandimo nf theca nreahlame Aanactinne af a dalissts natiura tnavitahly arrce tn the
unGersiandinig Or UBYsC Prootins, QUSions 81 4 GCudaiC Nawurd eYitadsy aiiss i it

process. The hardest amongst these often relate to the normalizabihity of the resulting
wavefunctions and the existence of the assumed smali-parameter expansions A conaise
summary of the modern techniques for studying such potentials can be found in {1],
which 1s also the basis of the present wnrk

The cruomal problem of normalizability can be avoided by seeking manitestly
normahzable solutions which, 1n practice, means polvnomials witl appropriate weights
In fact, it 1s now known that many probiems are quasi-exactiy-solvablie (QEs), prawnided
certain associated couplings are fine tuned, r.e suitzbly quantized A systematic study
of ks Hamltomans that owe their partial solvability to an underlying dynamical
SL(2, R} symmetry has been provided by Turbiner [2] Hamiltomans with no apparent
symmetry suddenly become expressible as functions of the generators of the SL(2, R)
group upon the fine tuming of certain couplings A partial set of mamfestly normalizable
solutions then splits off from the rest and beco.aes tractable by elementary means
Leach [3] has traced the origin of this circumstance to the faciorizability of the
tlamiltoman that reduces the problem to that of solving a Riccat equation This
approach 1s developed further 1n a series of papers by Leach and his co-workers [4]
An mdependent approach to N-dimensional anharmonic oscillators that are QEs 1s
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provided by Dutta and Willey {5} To the best of our knowledge, ( alogero [6] way
the first to point out a general technique for constructing ¢rs» Hamittomans., alheit in
the rather different context of singular perturbation theories and quantum catastrophes
The case of the sextic anharmomc oscillator was noted earher by Singh et al {7]

Inspite of these vastly varying and exhaustive studies, of s problems have generally
been considered to be of imited vtility due to the discrenzation of couplings In a
recent paper [1], we have demonstrated that this should indeed not be so A shghtly
different view of these problems shows that they are very nich in content For many
Hamiltomans there exists a sequence of @rs Hamiltomians that approach them
monotonically from abo e, providimg thereby a string of upper bounds to the energy
eigenvalues of the given problem The Hamiltonian of interest can thus be approached
as closely as one wishes The importance of this last remark can be readily appreciated
by recalling, for example, the case of the 1D guartic oscillator problem for whuch the
extraction of the correct 1symptotic factor creates difficulties of 1ts own Furthermore,
questions of the type histed above stmply cannot anse, since one deals only with
mamfestly normalizable solutions and the auxiliary couphngs can be reduced at will
Having done so, one has 1in hand an excellent approximate function that provides a
further improved estimate of the ergenvalues sought, irrespective of the status of the
attendant perturbation theones The avalability of a dense set of exact eigenvalues of
the nearby Hamiltonians as a function of some auxtliary couphng naturally suggests
elementary non-controversial graphical techniques that estimate energles even more
precisely In fact, it turns out, as we shall see in the sequel, that the sequence of upper
bounds in itsell generates a sequence of tight lower bounds. The procedure thus
becomes self contained

This paper 1s primarily devoted to the following problems

{1) the pure quartic potenual V=x",

{1} the quartic anharmonic potential V= x"+Ax* A>0,

(1i1) the quartic double-weil potential V= —ax’+x', a>0
To keep the work self contained, section 2 recapitulates the main steps of the framework
of [1} and discusses three methods of 1ts implementation 1n practice Sectron 3 considers
the quartic potential The ground state energy 1s computed extremely accurately and
the result for the 100th excited state is also exhibited The anharmonic potential
V=x"+ Ax? is discussed n section 4 and results for the cases of weak, medism and
very strong anharmonicities are provided. Section 5 15 devoted to the double-well
potential V= —ax’+x". The sphitting A between the ground and first excited states for
deep double wells is computed The last section 15 reserved for a summary of the results
and various observaticns Detalled applicabions and further development of our
framework [1] ss the main aim of the present study

2. The theoretical framework

We outline our procedure [1] through the case of V= be', b>0 To solve this problem
we introduce the auxiliary potential

U, = bx*+ ex® c=0 (21)
Using quartic scales the associated Schrodinger equation 18

W+ (e—x* ~gx") ¥ =0 (22)
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Let
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The parameter ¥ will be speufied shortly
From (2 2) we now have

m2a g vy e vy =gV H (g y =1V Te=0 (24)
Choose

gy=1 {25)
Setung t =X g,1" we convert {2 4) 1nto the three-step relation

tn+iln+a)a,.+le—v2Zn+5a,. -+ [y ~ve2n+3)]a, =0 (26

For even-panty solutions o, =0, a, =0 and for odd-panty solutions a;=0,a,# 0
Following the approdch described first by Saxena and Varma [8] in relation to a
three-term probiem for the Killingbeck potential, we neotice that (2 6) allows v(a) to
be a polynomial of degree R provided

ag #=1{ Ar=ap, =0 (27)
with A=2mork=2m+1, m=01,2, . From (27) we immed:ately get
¥ =+ g(2k+3) {28
so that
23
(it
S TR -

The condition a,..= then provides an algebraic equatton whose (m—+1) roots
determine the lowest (m+ 1} eigenvalues of one panty The remainder of the solutions
are net polynomials and will not concern us here The origin of the (m +1) roots can
be traced to the SL(2, R) symmetry connection of the problem [2] and 15 directiy
verifiable using the coeficient matnx approach of Saxena and Varma {8]

As k increases, so dogs the number of polynomal solutions. Remarkably, at the
same time the tuned sextic couphing g decreases monotomcally as per (2.9) and U/, » V
The energy eigenvalues £{g) then approach their quartic counterparts (0} from above
This feature, shared by ail problems to be discussed bere, is the basis of our method
The condition g, .~ =0 for any large fimte k& 1s easily solved numericaity This provides
a sequence of tighter and ughter upper bounds e(g) to £(0) We shali find that £{g)
are gentle monotonic functions of g that facilitate an easy translation of these bounds
mte remarkably accurate estimates of £(0) without recourse to the formal theory of
analyuic continuation

The roots of the equation a4, ,.=0 can be computed in three different ways The
first 1s to convert #t nto the vanishing of a tnidiagonal (m+1) % (m+ 1} determipant,
which, for example, for even k{=2m) becomes

Dim+1i=0 {(210)
The non-vanishing elements of Di{m+1) are

D, =e~-y4g-3 D, =19{2g-1)8,_,,

D‘{,,=[y2—\.§(4q*i)]6“,1 where 1= ¢, g =m+1



2734 SO Chiunlamy o1 ul
Equairon (27! van be sohved as a matris eigeitvalue equation For large & thiy s teme
consuming Secondly, we cin convert 12 10) 1nto & recursion relation amongst deter-
mindnts of the type

Din+ i ={¢ ~yldn+ 1D = 2020 - )]y =~ glén — 1)) - 1) (211

Setung £2(—1)=0 and pormahzing D40} suitably, the algebraic equation v edstly
solved Thisis a very efficient method th it expinits the tact that the fth root of Dim + 1)
lies Jlower than the fth root of Dim) and 1s not far from it for m -1 Lastiy, the
recursion relation can atself be used repeatedly We adopt the second method based
on(21l)

3. The potential V = x’

A sefection of resulty that represent a sequence of unper bounds for the first four levels
and the 100h level & dispiaved 1n table 1 These are the exact energy eigenvalues of
L', with g chosen as per 129)

Table 1. Upper bounds ¢, lut five levels of the quartic potential ¥ = | ¢, represents the
ground wsie and £, the ith evaited state Exact’ energies are taken from [9] For odd fesels
the h-value ts one more than that displayed n column U The residuat setic coupling 1s
related te A through (291 All resuits have been rounded off at the sinth dignn With
ncredsing k the convergence of ¢, o exact vajues 15 vearly seen

L £y &a © “1 “a
M 14471 —- — 407163 -
i 1 QU4 9% TT21 48 — 34902231 121134
[N 1 U6e 37 TS 1107 44 382612 11 7694
1 ono TO61 8™ a7 29 1042 32 1805 83 1 e723
10 G 1 0an6d T a8 RS 1025 76 3 50094 1] 6508
U Gug 1060 38 745546 1021 25 3799 74 11 6431
Eact [EUIRT 745370 HEMER 179y 7 116447

» Taken from v g

They bear out the claims made in the previous section As h increases, the auxhary
coupling g decreases and #(g) appreaches £{0) from above

A companson with the numencal results [9]} brings out the anticipated fact that
the bounds deviate from £(U) by essentially an order of g correction Throughout the
domain of pelynomial solutions g <<02 Hence U, never really differs substanually
from V The corresponding wavefunctions thus provide a natural set of good substitutes
for the unknown quartic functtons Using these to estimate (H ,..) We obtan very
much mnproved estimates of £(0) For the ground and first excited states, these are
readily seen to be upper bounds For the other states the same turns out to be true for
reasons to be explatned shortly

Lect us first get some quahtative feeling for the results At k=0 (g=~0.19, v(v) =
const} the ground state result 15 ~7 5% above the quartic ground state energy &, while
the improved boun 1s merely ~1% above This 1s indeed gratifying At k- 10, the
corrected estimate 1s about 0 1% higher and at k ~ 100, the corrected resultas 1060 55,
compared with the numerical value of 1 060 36 This feature 1s typical of all levels. We
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have checked 1t up to the 100th level The first direct bound 15 about 7 5-8 5% higher
The corrected one 1s about 1% higher The entire quartic spectrum can thus be bounded
to roughly 1% using this elementary approach. This 1s seemingly puzziing The hugher
tne level the more one expects it to be perturbed by the residual sextic coupling This
1s indeed so, but at the same time a compensating factor appears in that the higher
the level the smaller 15 the residual g-value that gives nse to it first time To sum up,
all levels up to the 20th, at least, can be bounded to better than | part 1n about 20 000
at k=2001e wvia 100 % 100 determinants

At higher k, this approach, although perfectly valid and straightforward, becomes
tedious. There 1s an ever-increasing number of integrals to be evaluated numencally
Happily, 1t can be repiaced by an elementary graphical techmique that accomplishes
about the same results.

Consider, for example, the ground state energy g,(g) Plot £,(g) against g for
g=<02 Any number of exact data points are available. The € — g curve 1s found to be
a smooth monotonic curve with a very gentle departure from hneanty that renders 1t
concave down throughout Hence, every linear extrapolation using two points on the
curve provides an upper bound to g, The closer the two points te g =0, the tighier
1s the bound. Taking the two points around k ~8§x 10" {1.e. g~ 107"} we find go(upper
bound) ~ 1,060 362 0909. Compare this with standard result [9] £,=1 060 362 090 48.
Better agreement can be obtained by going to smaller g The same holds for other
levels Table 2 provides the improved bounds for the levels of table 1.

Table 2, Improved upper bounds for the levels of table 1 based on the hnear extrapolaton
scheme using two nearby h-values The lower bounds are from the £-g® graph lor & = 0975
The A-values for the odd levels equal the & +1 values of cotumn i

A Fu Ey Eran £y €3
100 -
oK 1060 34 74370 — 38001 116476
)
! (9’2()) 1 060 366 745576 10219 379969 116449
§0 000
3900 L 066 362 ™ 74535701 1021 038 3799474 11 644 73
806 900
790 000 10603620909 7 455697 946 1020 9901 3799673032 11 64474553
*Exact t 1060 362 090 5 7455 697 938 1026.99= 31799673029 11 644 745 51
‘Lower’ 10603617 74556935 17996712 11 644 737

+ Taken from [9]
= Taken from wkB

Lower bounds obtained by plotting £(g) aganst g“, @ <0.98 For k= 100 the entire
curve 1s now marginally convex down A linear extrapolation thus gives lower bounds.
For o = 0975, for example, we get the lower bound &,({lower bound) = 1 060 3617. This
bound too can be tightened if one so desires. Our method is thus self contained. The
interval 0.98 <<a <1 is avoided as the curvature of the £ — g™ curve does not have a
fixed sign throughout. Hence, the nature of the bound cannot be deduced.

To conclude this section we note that, given the information available, one can
also deduce a number of interesting features of the energy spectrum of the auxiliary
potential U, =x"+gx® for 0= g=<02 Firstly, for any value of g 1n the above range
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one has in hand good upper and lower bounds to the energies. Secondly, the levels
themselves can be estimated to an excellent approximation Thirdly, useful knowledge
of levels somewhat outside the range can be obtained. Lastly, it is also possible to gain
some insight into the nature of the energy function near g =0, We shall not enter into
the details here.

4, The anharmonic potential V =4 Ax’

We introduce the auxiliary potential

U, =ax?+ bx*+ ex® c>0. {41}
Using oscillator units we have to solve the equation

ot (e —x - Ax*—gx®) =0 42)
Proceeding exactly as in section 2, polynomial solutions of degree k obtain 1f

Wgy=A (43)

¥ =1+Vg(2k+3) (4.4)
so that

Y-y= "}ﬁz—ﬁl (45)

As before, energy eigenvalues follow from the condition a,..=0

Some results which represent improved bounds as per the hnear extrapolation
scheme are presented in table 3 and compared with the ‘exact’ results of Biswas er al
{10]. The solutions for &k = 200 000 to k = 195 000 are employed for this purpose. More
accurate results can be obtained by going to higher & values.

The nature of a small-parameter i-expansion of the energy function has been a
subject of extensive investigation. Bender and Wu [11] concluded on the basis of a

Table 3. Improved bounds for the first three levels £, €,, &; of the anharmonic potential
V=x*+Ax? The first numbers 1n the energy columns are upper bounds, the second
numbers are ‘exact’ results from [10] and the third numbers are lower bounds The results
for A=01, 1, 10 and 100 are displaved Values of k around 200 000 have been used

Eq 3} &z
A=01 1065 285 509 63 330687201399 5747959 27
1 065 285 509 54 130687201 57479592
1 065 28540 33068714 5 747 957
A=1 1392 351643 4648 812 714 865504999
1392351641 4648 81270 86550499
13923510 4 648 810 8 655 041
A=10 2449 174078 § 599 003 49 16.6359216
2449 174072 85990034 16 635921
2449172 8§ 59890 15635 899
A=100 4999417 56 178301928 348739845
4999 417 545 17 830192 34873984

499413 17830172 3487393
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direct calculation of the perturbation senes that it does not converge Further studies
were reported by Simon [12]. A good survey of the relevant contributions 1s provided
by Biswas et al [10]. Hioe and co-workers [13] have also provided arguments to support
the fact that the Taylor expansion has a vamishing radius of convergence.

Within our approach this last fact can be very strongly advocated on the basis of
an elementary consideration.

To see this, observe that the conditions a,,, =0 and 2v'g y= A determine energy
series expansion in A within a certain radius of convergence A, that depends on ki e.
on the auxiliary coupling g. As k increases A. decreases and so does g. In the same
process the auxiliary potentiat U, approaches the anharmonic potential V. Thus, as k
increases L,— V and A, - 0. Since & = e(v), the radius of convergence of the energy
expansion is obviously bounded by A_.

It &5 interesting to note that the addition of a suitably tuned sextic term 1mmediately
allows one to write down a convergent expansion. For example, for

k=0 go=y=1+r+... for small A

In fact the first-order term in A is the same as that for the ground state of V= x?+ Ax*.
This is not surprising for g is O(A%).

R o TR T W T ST Y |
3. 11e aoubie-well poreneial

The quantity of great interest here is the splitting A between the ground and first excited
state energies that controls the tunnelling rate from one well to the other It is generally
believed to have an exponential character for deep wells [14]. We shall find that this
indeed is the case for the present problem.

Adding the auxihary potential as before and using quartic scales, we have to solve
the equation

P'r(e+ax’—x*—gx®)p=0. (5.1)
Polynomial solutions of degree k obtain provided
Vg y=1 (5.2
and
2k+3
v 4ay= (—-2—)- (5.3)

As usual the condition a;.,=0 determines the energy eigenvalues.

We have two distinct ways for computing A.

First we can exploit as before the nominal concavity of the £-g curve and obtain
improved bounds. For large k, i.e. small g, these qualify as excellent estimates of energy
levels so that A is easily obtained. These results are in excellent accord with numerically
computed A and those calculated by Keung ef af [15] using supersymmetric quantum
mechanics. Although the bounds obtained for deep wells (a=10) are not as close to
the energy eigenvalues as they were for corresponding k-values in the examples of the
previous sections, the splitting A so computed is essentially exact. This somewhat
surpnising claim is quite easy to understand. For large a, the well is deep and wide.
Both the ground and first excited state functions are approximately peaked over ihe
minima of the well. As a increases these minima move further and further out, away
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from the origin. Thus, 1n spite of the smallness of the coupling g, the residual sextic
term 15 able to contribute a bit more than it could in the previous examples. Hence,
the bounds are marginally less tight than for the single-well potentials Further, as a
1ncreases A becomes smaller and smaller and hence one would need to know the levels
more and more precisely. However, this 15 not quite the case. As a increases the two
levels of interest approach near degeneracy The corresponding probability distributions
become almost indistinguishable from each other wherever they are non-negligibie.
Hence, the residual sextic term contnbutes about the same to the two levels. Thus, the
wells with large @ but very small g correspond to effectively the same A as the well
with g = 0. Having reduced g to the level of ~107° we are therefore able to determine
the splittings extremely accurately using the linear extrapolation mechanism.

The claim just made can be confirmed entirely within our own framework without
recourse to any other means This leads us to our second independent estimate of A,
For this we abserve that the energy levels of the auxiliary double-well potential
Us=—ax’+x*+ gx® with g < 5x 107° and a ~ 1® are amenable to an excellent parabolic
fit e = A+ Bg+ Cg” This is true for both levels of interest. The coefficient A determines
£q and g, for the unperturbed quartic double well of interest to us here. In table 4 we
collect the results for @ =8, 9, 10 based on this approach. The energies recorded are
in complete accord with a fifth-order Runge-Kutta computation in as far as it goes.

The results for shallow wells are alse 1n complete accord with Runge-Kutta computa-

tions Thess are not listed in table 4.

Table 4. Esumated ground and first excited state energies &, and £, for the double-well
potential ¥V =—av+ v* based on a parabohic fit for the corresponding levels of the potential
Hy=—ar’+ ¢*+gx” for g= 5% 107° The quantity A 15 the spliting {A = &, — ;) based on
these results while Ap 1s the prediction of a fifth order Runge- Kutta computatton

q £y £] A=gp g Ag

8 ~12 136 330 7204 —12 134 814 3452 1 516 38x 107" 15t6x107°
9 ~16 126 186 4549 —16 125958 5468 2279 08% 107" 228x 107
10 -20633 576 7028 —20 633 546 8842 2981 86x 177 208x107°

Finally, we find 1hat thz sphttings for a = § are predicted very satisfactonly by the

simple empincal formula
A= Aa*  expl—-Ba™™) (5.4)
with A =3.063 4012 and B = 0.474 1456.

We have used our results for 2 =9 and a = 10 to compute A and B. We then predict
A=3.434x107¢ for a=11 and A=3.51x10"7 for a=12, in complete accord with
known results [15]. Our result for a =8 is also reproduced. Surprisingly, even for
shallower wells (¢ =6, 7), {5.4) is fairly accurate. We note that a variational calculation
ustng two peak Gaussian functions also suggests an exponential form for A that is less
accurate than (5.4).

5. Concluding remarks

For the set of problems discussed it this paper we have shown that the task of
implementing the quantization recipe can be replaced by a set of transparent conditions
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without having to depart from the real problem 1n any significant way. As a result one
1s able to determine the energy spectra to as much accuracy as one desires The
procedure 1s clearly applicable to similar problems in higher dimensions.

Having estimated the energes so accurately, we find 1t pertinent to address the
following question. The type of problems in hand do not seem to possess neat
closed-form energy expressions. Given this, can one at least find a closed-form rep-
resentation that is realistic? For the pure quartic potential V =x*, at least, such an
exnression is indezd empirically constructible. It is

2

Here a=0.085328, b=0.064 2928 and ¢=0.5109453 This formula reproduces the
entire quariic specirum to within 0.16%.

We have also applied our method to the potential ¥V = x*+ Ax* Adding the auxiliary
potential ax®+ bx'® and suitably quantizing the auxiliary couplings a and b one finds
a four-term recursion relation that admits one polynomial soluiion per k—the degree
of the polynomial. It is indeed gratifying that the auxiliary couplings a and b tum out
to be extremely small and positive Thus, by going up t0 k=14 and applying the
perturbative correction as explained in section 3 one is already able to bind the first
six levels to about 1% of the numerical vaiues for any A whatsoever, including the
pure sextic case (A - 00),

The conceptual soundness of our approach is obvious. Its efficiency 1a practice
deserves to be mentioned. This can be gauged from the fact that any low-lying quartic
levei can be estimated to an accuracy of about one part in 10° by investing a computer
time (using an HP 9000 and BASIC language programming) of the order of 1 minute.

Next, we 1nvite the reader to an open question in relation to this work. We have
seen that as k increases the energy levels of the sequence of auxihary potentials tend
to those of the problem in hand. It is then indeed tempting i ask if the limat k- o0,
i.e. g+ 0, can be implemented If this could be feasibie then the power series solutions
v(x) for the problem of interest could be viewed as the k- oo limit of a sequence of
polynomials of degree k. The dufficuity is that one has to impose two conditions @, =10
and a,.,~= 0. How could these be properly implemented simultaneously in the k>
hmit 1s not clear to us.

In view of the added importance of QEs problems, some deeper questions deserve
to be noted. So far one knows that Qes problems arise due to erther an underlying
dynamucal SL(2, R) symmetry [2] or because the Hamiltontan or the associated Hill
determinant can be factorized [3, 7]. It would be interesting to find out if there could
be other reasons for their origin, such as, for example, dynamical symmetries other
than SL(2, R). The problem of the potential V = x*+ gx®+ ax®+ bx'°, discussed earlier
on in this sectjon, is a case in point. It is easily verified that for tuned values of a, b
that lead to polynomial solutions, the associated Hamiltonian has no connection with
the SL{2, R} group. Further, one would like to know 1f a symmetry connection is at
all necessary, in the first place, for polynomial sulutions to materialize. Specifically,
we have in mind the example of an asymmetric one dimensional oscillator {V =
$kix’, x>0 and V=4k,x?, x=<0), It is an exactly solvable problem whose solutions
are Weber functions (see [14)). If k,/k, =[(2n,+ 1)/ (2n,+ 1)]* there appear an infinite
but incomplete set of polynomial solutions. As far as one can tell, there appears to be
no symmetry connection here at all. The problem does not belong to the Turbiner class
[2] and the Hamiltonian is rot factorizable & la Leach [3].

n+1y"?
ea=020+ 1)(a+bn+cn2)”6+(—'—) n=012,....
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Finally, a very pertinent question to ask 15 about the criteria that the manifestly
normalizable solutions of a problem obtained by tuning parameters are indeed physical.
This question arises because such tuning of parameters can also pernut formally
divergent solutions of certain multiple-term recursion relations to collapse into poly-
nomals and thus become normalizable at tuned values of coupling constants. Upon
relaxing the tuning condition they follow a divergent path in the parameter space of
such auxiliary couplings. An explicit example of such a circumstance has recently been
pointed out by Chhajlany and Malaev [16]. Of course, we must note that such an
unhappy circumstance does not obtain with our solutions here. They originate in an
underlying symmetry, continue to the verifiable correct limuts and the energy predictions
based on them for arbitrary coupling constant values other than the tuned values are
demonstrably correct.

The accomplishments of this work can be summed up as follows. Qes problems
have been extensively studied in the literature and have generally been considered to
be of limited utility. We have demonstrated that this is indeed not so. They provide
meaningful estimates of energy eigenvalues for other problems that are not Qes. The
procedure 1s conceptually sound, avoids troublesome questions such as those pertaining
to normalizability and the nature of small-parameter expansions. The method works
for any levei and any anharmonicity in the cases considered. At the same time,
approximate polynomial wavefunctions related to underlying symmetry groups obtain
as viable substitutes for the exact wavefunctions that are not avadable. Given the
computational facilities, very accurate numerical results can be obtained. Accuracies
of about one part in 10" have been demonstrated and greater accuracies are clearly
achievable. Cn the practical side the method works on essentially the same lines as
the Hill determinant approach so that the practical methodology of the laiter comes
in quite kandy. For useful resulis both methods require roots of very large-size
deierminants. However, in both cases the determinanis have simple structures
(tridiagonal form in the principal cases discussed) that substantially facilitate the
evaluation of roots. We find that for large-size determinants the Hill determinant
approach produces superior nuinerical results, The difference arises due to the presence
of uon-zero auxiliary contributions in our case. On the other hand tne Hill approach
requires a separate proof of normaiizabiiity and the wavefunctions formaily remain
power series functions which can never be exact as far as any practical calculation goes.

On the computational side there are a host of other methods which are decisively
more efficient whenever they apply. We briefly review a selected few. Following a
chronological sequence we begin with the elegant approach of intermediate Haml-
tonians due to Bazley and Fox [17]. It provides excellent lower bounds extremely
efficiently for low-lying states of anharmonic and other potentials. The conceptual
basis of this method is very transparent and very small-size (~5 x 5) determinants are
needed. Results obtained for weak and medium anharmonicities are very impressive
indeed. The Hill determinant approach {9, 10] has already been noted. Next comes
the two-step approach of Cheng-Shiung Hsue and Chern [18] using coherent states,
which is also able to extract very accurate estimates using small-size determinants
(~20x20). They have also discussed all the three main problems ve have considered.
bound. Another powerful approach is the method of moments due to Bessis and Handy
[19]. Again good results (lower bounds)} obtain with ease. The method needs special
adaptations to treat excited states and the Killingbeck problem has also been examined
using this approach [20]. From a numerical point of view and to the best of our
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knowledge the most striking accuracies using small-size determinants (7 X 7) are obtain-
able through the rational function approach of Fernandez et al {21], which applies to
a wide variety of potentials, although double-well potentials have not been explicitly
mentioned by the authors. The method successively obtains tighter and tighter upper
and lower bounds as the determinant size increascs in steps of one. As an exampie,
using 7 <7 determinants the first four quartic levels are estimated to one part in 10",
The authors have been unable to provide a theoretical reascn for the emergence of
successive upper and lower bounds.

A general observation concerning the methods of the previous paragraph is m
order. Unlike our and the Hill determinant-based approaches the above methods
nvolve general N X N determinants. Thus, whereas their computational superiority
for the case of low-lying states is beyond doubt, the same need not be true for the
case of highly excited states such as the 100th level Unfortunately, these authors have
not shown such cases and we are unable to add anything more in relation to this
question.

The above has been a very limited review and a number of other useful approaches
such as Pade-Borel summability techniques for the weak coupling case and 1/ N
expansion-based methods, etc, have been left unattended. However, their accomplish-
ments can be traced through [1, 10, 13].

Finally, we note that we are in the process of applying the present method, which
may be termed as the method of auxihary Hamiltonians, to the Coulomb-diamagnetic
and the Coulomb-plus linear potential problems. Preliminary results in the Coulomb-
diamagnetic case indicate that an excellent description of the Coulombic and quasi-
Landau regimes obtains. The details of these and some other applications will be
discussed elsewhere.
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