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1. 1n:roduction 

Power law potentials, dnharmoni; oscillators dnd multiple-well potentials continue to 
remain a focus of attention in non-relativistx quantum mechanics The real chdllecge 
is the lack of an adequdtely powerful universd! approach for solvlng multiple-term 
recursion relations Although enormous progres5 has been made over the years in our  
ux2e:stand:cg nf these p:ob!r~:, que:!lnns a< a de!:ca:e "atUrc :neu::&!y ariss :n :he 
process. The hardest amongst these often relate to t h t  normdllzahlllty of the resulting 
wdvefunctzons and the existence of the  assumed imali-parameter ehpansions A concse 
summary of the modem techniques for studling such potentials can be found in [ I ] ,  
which IS also the basis of the present work 

The crucial problem of nomalizability can b e  d\oided by seeking manitestly 
normalizable soiuticns which. in practice. means polynomidls with appropriate weights 
i n  faci, ii is now known that many problems are quasi-exaciiy-solvabie iotsi, provtaea 
certain associated couplings are fine tuned, 1.e sditahly quanilzed A systenratic study 
of QES Hamiltonians that owe their partial solvabilrty to dn underlying dynamlcal 
SL(2, R I  symmetry has been provided by Turbiner [ 2 ]  Hamiltonians with no apparent 
symmetry suddenly become expressible as functions of the generators of the SL(2, R !  
group upon the fine tuning of certain couplings A partial set ofmanifestly normalizable 
solutions then splits off from the rest and beco..ies tractable by elementary means 
Leach [31 has traced :he origin of this circumstance to the facimrability of the 
Xamiltonian that reduces the problem to th?t of solving a Riccati equation This 
approach is developed further ~n a series of papers by Leach and his co-workers [4] 
An independent approach to N-dimensional anharmonic oscillators that are QES IS 

Permanenr addiesi General Physic, Depanmenr. Peoples Fnendr'llp V n n m $ t \ ,  0rdy"dre Street. 3,  
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provided by Dutta dnd Willry (L! To the he31 01 our  hnowlrdge, ( alogero [h] 1i.15 

the first fa  point out a general technique for conitructing y i ~ s  Hamiltonlana. dlhelt I C  

the rather different context of singular perturbation theoriec ana  q u n ' u m  catdstrophes 
The case of the sextic anharmonic oscillator uds noted earlier by $ngh ef a /  (71 

Inspite of these vastly varying dnd exhaustive studies. ~i s problems ha,e generdlly 
been considered to be of llmited utility due  to the discretization of couplingr I n  n 
iecent peper [I] ,  we have demonstrated that this should indeed not be so 4 slightly 
different view of these problems shows that they are very rtch in  content For many 
Hamiltonians there exists a Fequence of Q F I  Hamiltonians that approach them 
monotonicaliy from ab01 e. providing thereby a string of upper bounds to  the energy 
eigenvalues of the given problem The Hamiltonian of interest can thus be approached 
as closely a s  one wishes The importance o f th i s  last remark can be readily app-ecidted 
by recalling, for example, the case of the in quartic oscillator problem for whwh the 
extraction of the correct rbymptotic Factor creates difficulties of  its own Furthermore, 
questions of  the type listed abobe rimply cannot arise. r ime  one deals only w i h  
mdnifestly normalizable solutions and the auxilian couplings can he reduced at st!l 
Having done so. one has in hdnd an excellent approximate function that prcvides a 
further improved estimate of  the eigenvalues sought, irrerpective of the status of the 
attendant perturbation theories Thz availability of a dense set of exdct eigenvalues of 
the nearby Hamiltonians a s  a function of s r "  auxiliary coupling natuially suggests 
elementary non-controversial grdphical techniques that estimdte energies eben more 
precisely In fact, it turns out, a s  we sSall see in the sequel, that the sequence of upper 
bounds in itself generates a sequence of  tight lower bounds. The procedure thus 
becomes self contained 

S C Chliu,lam <'I " 1  

This paper is primarily devoted to the following problems 
(I) the pure quartic potential V=.Y", 
( t i )  the quartic anharmonic potential V = x'+ A.Y', A > 0, 
(iii) the quartic double-well potential V =  -a.r'+ x J ,  a > O  

To keep the work %If contained, section 2 recapitulates the main steps of the framework 
of  [ l ]  and discusses three methods of its impkmenldtlOn in practice Section 3 considers 
the quartic potential The ground state energy is computed extremely dccurately and 
the result for the 100th excited state 1s also exhibited The anhdrmonic potential 
V=x:+AxJ is discussed in section 4 and results for the cases of  weak. medium and 
very strong anbarmonicities are provided. Section 5 IS devoted to the double-well 
potential V =  -arr'+x". The splitting 1 between the ground and first excited states for 
deep double wells is computed The last section is reserved for a summary of the results 
and various observaticns Detailed applications and further delelopment of our 
framework [ I ]  is the main aim of the present study 

2. The theoretical framework 

We outline our  procedure [ I ]  through the case of V = b y ' ,  6 > 0 To solve this problem 
we introduce the auxiliary potential 

U, = bx"+ cxO c > o  12 I )  

Using quartic scales the associated Schrodinger equation IS 

w+ ( E  - rd-gx")Y = 0 
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The pdrameter 7 uill be specified shortly 
From ( 2  21 we now h a l e  

L " - : t , F  r'+ y t i l ' t [ t  - y + l  +3,Ri \ '+ i~g y - ~ ~ \ ' ~ ~ = n  i z 3 )  

Choose 
- 

? , g y = l  ( 2 5 1  

Setting I =I U,,," w e  convert ! ?  41 Into the three-step relation 

i n  +3!1 + 4 ~ ~ . , + , + [ ~  - yizli  + S I ] ~ . , ~ + [ ~ ~ - , ~ ~ ( Z ~  +3110, =n  1 2  61 

For e\rn-pdrity iolutions U,,* 0, a,  = U  dnd for odd-pdrity 5olutlonc a" =O. a ,  f 0 
Fullowng the approdch described first by Saxen3 dnd Vdrmd [XI in  relation to a 
three-term problem for the Kiilingbesli potenttai. me nctice thdt ! ?  6 )  allows L ' I x )  to 
he a polynomdl of degree I, pro\idsd 

U< f O  ai.. = ah*4 = 0 ( 2  7)  

y - =  % g i 2 k  + 3  I 

wt'n h = 2 m o r h = ? m + l , m = O . I , 2 ,  . From137!  weimmediatelyget  
, -  

!? 8 !  

50 that 

The condition a,,, = !I then p rondes  dn algebraic equation whose i m +:) roots 
determine the lowest i m  + 1 I eigenvalues of one  parity The remainder o f t t e   solution^ 
are nc.t polynomials and will not concern us here The origin of the ( m  + 1 I roots can 
be traced to the SLI?. R )  symmetry connection of the problem [ 2 ]  and is directly 
\enfiable using the coefficient matrix approach of  Saxena and Varma [8] 

A i  k increases, so does the number of polynomlal solutions. Remarkably, at the 
sdme Lime the tuned sextic coupling g decreases monotonically ds per (2.9) and U, -, V 
The energy eigenvalurs F ! g  I then dpproach their quartic counterpans ~ ( 0 )  from above 
This fedture, shared by ail problems to be discussed bere, is the basis of our method 
The condition ai . ? = O  for any large fimte k is easily solved numerically This provides 
a sequence of  tighter and righter upper bounds Eigl to ~ ( 0 )  We shall find that a(g) 
are gentle monotonic functions of g thdl facilitdte an easy translation of these bounds 
intn remarkably accurate estlmatea of E I O )  without recourse to  the formal theory of 
analytic continuation 

The roots of the equation o,,,=O can Se computed in three different ways The 
first is to convert i t  into the vanishing of .I tridldgonal i m +  I !  x ( m +  1) determinant, 
which. for example, for even k ( = ? m I  becomes 

D ( m + l l  = O  i z  10) 

The non-%anishing elements of D ! m + l l  are 

D,, = E - yi4q - 3 )  D,, = ? q i 2 q - l i S , * , q  

where I < q . q ' ~ m + l  



T ~ ~ C P  rrom ,.. *ld 

The) brdr out the claims made In ths prebious section A h  L Incredies, the auyiliarj 
coupling g decredses a n d  F ( g )  approaches c ( 0 )  from abo\,e 

A comparison w t h  the numerical rewlts [C] hrings out the dnricipdted fact that 
the bounds devidte from ~ ( 0 1  by essentially d n  order o i  ,q correction Throughout the 
domdin of  polynomial ~olul ions g C 0  2 Hence U ,  neler  really differs substantially 
from V The corresponding wavefunctions thus provided nalurdl set cf good substitutes 
for the unknown quartic functions Using these to estlmate (H,,,& we obtain Lery 
much improbed estimates of ~ ( 0 )  For the groa>nd and first excited stdtes, these are 
readily seen to be upper  bounds For the other states the same turns out to be (rue for 
reasons 10 he explained shortly 

Let us first get some qudlitative feeling for the results At k = O  ig=-O.l9, a(r1 = 
conit) the ground state result is -7 5% above the quartic ground stdte energy E,,  while 
the improved boun is merely -1% above This IS indeed eratifying At k -  10, rhc 
corrected estimate is about  0 1% higher and dl  k - 100. the corrected result is 1 060 8 5 ,  
compdred with the numerical value of 1 060 36 This feature is typical of all lelels. We 
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haie checked i t  up to the 100th level The first direct bound IS about 7 5-8 5 %  higher 
The corrected one IS about I% higher The entlre quartic spectrum Cdn thus be bounded 
to roughly 1% using this elementary approach. This is seemingly puzzling The higher 
me level the more one exvects it to he perturbed by the residual sehtic coupling This 
1s indeed so, but at the sane  time a compensating factor appears in that the higher 
the level the smaller is the residual g-value that gives nse to i t  first time To sum up. 
all levels up to the ZOth, at least, can be bounded to better than I pari in about 20000 
at k = 200 I e via lOOx 100 determinants 

At hlgher k, this approach, although perfectly ralld and straightforward, becomes 
tedious. There is an ever-increasing number of integrals to be evaluated numencally 
Happily, it can be replaced by dn elementary graphical technique that accomplishes 
about the sdme results. 

Consider, for example, the ground state energy eO(g) Plot 4 g )  against g for 
g s 0 2 Any number of exact data points are available. The E - g curve is found to be 
a smooth monotonic curve with a very gentle departure from linearity that renders it 
concave down throughout Hence, every linear extrapolation using two points on the 
curve provides .in upper bound to E~ The closer the tu'o points to g=O, the tighter 
IS the bound. Taking the two points around k -  X x 10% (#.e. g -  IO-') we find €,(upper 
bound) - 1.060 362 0909. Compare this with standard result [9] E" = 1 060 362 090 48. 
Better agreement can be obtained by going to smaller g. The same holds for other 
level9 Table Z provides the improved bounds for the levels of table I .  

Table 2. Improved upper bounds for the l e ~ e l i  ofrdble I based on the linear ertrapolauon 
schemcu~morlonearbr h-values Thelo\rerbourrdrarpfromihe E - R -  graph (ora =0975 
The A-valuer for the odd level\ equal the k + I vdlues of column I 

h r,, e ,  rl/lcl e l  €3 

loo 
l U 6 0 4 4  7 457 0 - 3 800 I I 1  6476 

I ou'l 
I Ob0 366 7 425 76 1021 9 3 799 69 116449 

it::: I 060 362 7 455 701 1U21 038 3 799 674 I I  64475 

98 

990 

YUO 000 
1 060 342 090 9 7 455 697 916 lUZ0 9901 3 799 673 032 i I b44 745 53 7vo WJ 

' E x d ~ t :  10h03620905 7455h97938 102699r 3799673029 I164474551 
'Lower' I 060 361 7 7 455 693 5 37996712 11644737 

I Taken from 191 
f Tiken from W ~ B  

Lower bounds obtained by plotting E(g) against g", 01 ~ 0 . 9 8  For k a  100 the entire 
curve is now marginally convex down A linear extrapolation thus gives lower bounds. 
For n = 0 975, for example, we get the lower bound z,(lower bound) = 1 060 3617. This 
bound too can be ttghtened if one so desires. Our method is thus self contained. The 
interval 0.98 c n < I is avoided as the curvature of the E - g" curve does not have a 
fixed sign throughout. Hence, the nature of the bound cannot be deduced. 

To conclude this section we note that, given the information available, one can 
also deduce a number of interesting features of the energy spectrum of the auxiliary 
potential U,  = x'+ gx' for 0 =z g S 0 2 Firstly, for any value of g in the above range 
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one has in hand good upper and lower bounds to the energies. Secondly, the levels 
themselves can be estimated to an excellent approximation Thirdly, useful knowledge 
of levels somewhat outside the range can be obtained. Lastly, it is also possible to gain 
some insight into the nature of the energy function near g =O.  We shall not enter into 
the details here. 

S C Chhajlanj er 01 

4. The anharmonic potential V=s'+Ax' 

We introduce the auxiliary potential 

U: = ax2+ brA+cxb c > 0. 
Using oscillator units we have to solve the equation 

( 4  I J  

@ " + ( E  -x2 -Ax4- gx6)@ = 0 

2 6 y = A  (4 3) 

y 2 = l + & ( 2 k + 3 )  (4.4) 

(4 2) 
Proceeding exactly as in section 2, polynomlal solutions of degree k obtain if 

so that 

As before, energy eigenvalues follow from the condition a,+,=O 
Some results which represent improved bounds as per the h e a r  extrapolatioii 

scheme are presected in table 3 and compared with the 'exact' results of Biswas et a/ 
[IO]. The solutions for k = 200 000 to k = 195 000 are employed for this purpose. More 
accurate results can be obtained by going to higher k values. 

The nature of a small-pnrameter A-expansion of the energy function has been a 
subject of extensive investigation. Bender and Wu [ l l ]  concluded OD the basis of a 

Table 3. !mpmved bounds for the first three levels eo, E , ,  hi of the anharmonic poteiitial 
V=%'+.ii' The fimt numbers tn rhe energy c~ lumns  arc upper bounds. ihe second 
n ~ m h e ~  arc 'exad RSU!!~ frnm [IO! and the third n n m h e ~  are lawer bounds +he resultr 
for A = o  I .  I ,  I O  and 100 are dxplayed Values of k around 200000 have been used 

ED E ,  8 2  

A=01 I Ob5 285 509 63 3 306 872 013 99 5 747 959 27 
I 065 285 509 54 
I 065 285 40 

3 306 87201 
3 306 871 4 

5 147 959 2 
5 747 957 

A = I  I 392 351 643 4648812714 8 655 049 99 
1392351641 464881210 8 655 049 9 
I 392 351 0 4648 810 8 655 041 

.1= I O  2449 174078 8 599 003 49 16.6359216 
2 449 174 072 8 599 003 4 16635921 
2449172 8 598 99 16635899 

A = 100 4 9994 i i  5b  i7S3Oi928 34 87: 984 5 
4 999417 545 17 830 192 34 873 984 
4994 13 17 830 172 34 873 93 
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direct calculation of the perturbation series that it does not converge Further studies 
were reported by Simon [12]. A good survey of the relevant contributions is provided 
by Biswas er a/ [IO]. Hioe and co-workers [ 1 3 ]  have also provided arguments to support 
the fact that the Taylor expansion has a vanishing radius of convergence. 

Within our approach this last fact can he very strongly advocated on the basis of 
an  elementary consideratton. 

To see this, observe that the conditions akrl = 0 and 2& y = A determine energy 

series expension in A within a certain radius of convergence A ,  that depends on k, i e. 
on the auxiliary coupling g. As k increases A =  decreases and so does g. In the same 
process the auxiliary potential U, approaches the anharmonic potential V. Thus, as k 
increases U2- V and A,+O. Since E = E(Y), the radius of convergence of the energy 
expansion is obviously hounded by A < .  

It is interesting to note that the addition of a suitably tuned sextic term immediately 
allows one to write down a convergent expansion. For example, for 

E“= y = 1 +:A+.  . . 

as a pUiii-iioa of y, paiame:ei ii is &eiii,iiied (4.5). Clcaipy, i’ has a 

k = O  for small A. 

In fact the first-order term in A is the szme as that for Lhe ground state of V =  x2+ Ax4. 
Th’- . is not surprising for g is O(A2). 

5. The doubie-weii poi&@ai “ + - a x 2 t x 4  

The quantity of great interest here is the splitting A between the ground and first excited 
state energies that controls the tunnelling rate from one well to the other It is generally 
believed to have an exponential character for deep wells [ 141. We shall find that this 
indeed is the case for the present problem. 

Adding the auxiliary potential as before and using quartic scales, we have to solve 
the equation 

$”+(E .+ ax2-  x4- gxO)+ =o. (5.1) 

2 v 5 7 = 1  (5 .2)  

Polynomial solutions of degree k obtain provided 

and 

( 2 k t 3 )  
7’ + a y  =- 

2 (5.3) 

As usual the condition ak+,=O determines the energy eigenvalues. 
We have two distinct ways for computing A. 
First we can exploit as before :he nominal concavity of the E-g curve and obtain 

improved hounds. For large k, i.e. small g, these qualify as excellent estimates of energy 
levek so that A is easily obtained. These results are in excellent accord with numerically 
computed A and those calculated by Keung et al [IS] using supersymmetric quantum 
mechaiics. Although the hounds obtained for deep wells ( a  a 10) are not as close to 
the energy eigenvalues as they were for corresponding k-values in the examples of the 
previous sections, the splitting A so computed is essentially exact. This somewhat 
surpnsing claim is quite easy to understand. For large a, the well is deep and wide. 
Both :he ground and first excited state functions are approximately peaked over ihe 
minima of the well. As a increases these minima move further and further out, away 
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from the origin. Thus, in spite of the smallness uf the coupling g, the residual sextic 
term IS able to contribute a bit more than it could in the previous examples. Hence, 
the bounds are marginally less tight than for the single-well potentials Further, as n 
increases A becomes smaller and smaller and hence one would need to know the levels 
more and more precisely. However, this is not quite the case. As n increases the two 
levels of interest approach near degeneracy The corresponding probability distnbutions 
become almost indistingurshabie from each other wherever they are non-negiigibie. 
Hence, the residual sextic term contributes about the same to the two levels. Thus, the 
wells with large n but very small g correspond to effectively the same A as the well 
with g =O. Having reduced g to the level of - IO- '  we are therefore able to determine 
the splittings extremely accurately using the linear extrapolation mechanism. 

The claim just made can be confirmed entirely within our own framework without 
recourse to any other means This leads us to our second independent estimate of A. 
For this we observe that the energy levels of the auxiliary double-well potential 
U,= -nx'+x'+gx6withg<5x IO-landa- IOarzamenabletoanexcellentparabolic 
tit E = A + Bg + Cg' This is true for both levels of interest. The coefficient A determines 
6" and E ,  for the unperturbed quartic double well of interest to us here. In table 4 we 
collect the results for a = 8, 9, 10 based on this approach. The energies recorded are 
in complete accord with a fifth-order Runge-Kutta computation in as far as it goes. 
T h o  ~ - ~ - . l t -  Fn- rhrlln..i SSIPIIQ I . ~ P  -1-n sn r,v"I.de .,-mr.i with Rnsnoe-Ksx$t2 mmnnits. 

' i Z .  ,r,v1.1 .". ,,......"*. ..-..l...I".oY ... ~-"".- ...I.. -."..~- __-..l__...r_._ 
tions TheFe are not listed in table 4. 

S C Chhn,lnny er a/ 

Table 4. Estimated ground and first excited state energies E. and E ,  lor the double-well 
potenrml V =  -or'+ r'based m a  parabolic51 f~orthesorrespon~mglevelroflhepotenlral 
~,=-o~~+i4+p~.x"forp~jx10-' ThequantityiZistherpliti ing(3=~,-E,)baredon 
these rewlls while S, IS the prediction of d fifth order Runge-Kutta ComPUtatlon 

(I Po S I  A = e , - Q  
~- __ 

8 -12 1363307204 -121348143452 i 5 1 6 3 8 X l O ~ '  I 5 1 b X 1 0 ~ '  
9 -161261864549 -16 1259585468 227UOXX10~'  2 2 8 X I O . '  

10 -20 633 576 7028 -20 633 546 8x42 2 981 86 x IC-' 2 98 x IO-' 

Finally, we find i!iat ihr splittings for n 2 8 are predicted very satisfactorily by the 
simple empirical formula 

A=Aa"'exp(-Bn"') (5.4) 

with A -3.063 4012 and B =0.474 1456. 
We have used our results for a =9  and a = IO to compute A and B. We then predict 

A = 3 . 4 3 4 ~ 1 0 ' ~  for n = l l  and A=3.51~10-' for n = 1 2 ,  in complete accord with 
known results [IS]. Our result Cor n=X is aiso reproduced. Surpnsingiy, even ior 
shallower wells (a = 6. 7). (5.4) is fairly accurate. We note that a variational calculation 
usiiig WO peak Gaussian functions also suggests an exponential form for A that is less 
acc%rate than (5.4). 

5. Concluding remarks 

For the set of problems discussed in this paper we have shown that the task of 
implementing the quantlzation recipe can be replaced by a set of transparent conditions 
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without having to depart from the real problem in any significant way. As a result one 
IS able to determine the energy spectra to as much accuracy as one desires The 
procedure is clearly applicable to similar problems in higher dimensions. 

Having estimated the energies so accurately, we find it pertinent to address the 
following question. The type of problems in hand do not seem to possess neat 
closed-form energy expressions. Given this, can one at least find a closed-form rep- 
resentation that is realistic? For the pure quartic potential V = x 4 ,  at least, such an 
e\xession is indeed empirically constructible. It is 

tn = (2n+  l ) (a+bn+cn2)"6+ n = 0, 1,2,  . . . 
Here a = 0.085 328, b = 0.064 2928 and c = 0.510 9453 This formula reproduces the 
entire quartic SpectNm to within 0.16%. 

We have also applied our method to the potential V = XI+ AX' Adding the auxiliary 
potential axn+ bx'' and suitably quantizing the auxiliary couplings a and b one finds 
a four-term recursion relation that admits one polynemial solucton per k-the degree 
of the polynomial. It is indeed gratifying that the auxiliary couplings a and b turn out 
to be extremely small and positive Thus, by going up to k = 14 and applying the 
perturbative correction as explained in section 3 one is already able to bind the first 
six levels to about 1% of the numerical vaiues for any A whatsoever, including the 
pure sextic case ( A  + m). 

The conceptual soundness of our approach is obvious. Its efficiency in practice 
deserves to be mentioned. This can be gauged from the fact that any low-lying quartic 
level can be estimated to an accuracy of about one part in lo6 by investing a computer 
time (using an HP SO00 and BASIC language programming) of the order of 1 minute. 

Next, we invite the reader to an open question in relation to this work. We have 
seen that as k increases the energy levels of the sequence of auxiliary potentials tend 
to those of the problem in hand. It is then indeed tempting :e ask if the limit k-m,  
i.e. g -0, can be implemented If this could be feasible then the power series solutions 
u ( x )  for the probiem of interest could be viewed as the k-c@ limit of a sequence of 
polynomials of degree k The difficulty is that one has to impose two conditions akt2 = 0 
and ax+.=O. How could these be properly implemented simbltaneously in the k+m 
limit is not clear to us. 

In view of the added importance of QES problems, some deeper questions deserve 
to be noted. So far one knows that QES problems arise due to elther an underlying 
dynamical S i ( 2 ,  R )  symmetry [2] or because the Hamiltonian or the associated Hill 
determinant can be factorized 13: 71. It would be interesting to find out if there could 
be other reasons for their origin, such as, for example, dynamical symmetries other 
than SL(2, R ) .  The problem of the potential V = x 2 + g x 6 + a x s +  bx", discussed earlier 
on in this section, is a case in point. It is easily verified that for tuned values of a, b 
that lead to polynomial solutions, the associated Hamiltonian has no connection with 
the SL(2, R )  group. Further, one would like to know if a symmetry connection is at 
all necessary, in the first place, for polynomial svlutions to materialize. Specifically, 
we have in mind the exampls of an asymmetric one dimensional oscillator ( V =  
fk,x',x>O and V=fk ,x ' ,xSO) .  It is an exactly solvable problem whose solutions 
are Weber functions (see [141). If k ,  f k. = [(2n2+ l ) l (Zn,  + 1)12 there appear an infinite 
but incomplete set of polynomial solutions. As far as one can tell, there appears to be 
no symmetry connection here at all. The problem does not belong to the Turbiner class 
[21 and the Hamiltonian is cot factorizable d la Leach [3]. 
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Finally, a very pertinent question to ask is about the criteria that the manifestly 
normalizahle solutions of a problem obtained by tuning parameters are indeed physical. 
This question arises because such tuning of parameters can also permit formally 
divergent solutions of certzin multiple-term recursion relations to collapse into poly- 
nomials and thus become normalizable at tuned values of coupling constants. Upon 
relaxing the tuning condition they follow a divergent path in the parameter space of 
such auxiliary couplings. An explicit example of such a circumstance has recently heen 
pointed out by Chhajlany and Malnev 1161. Of course, we must note that such an 
unhappy circumstance does not obtain with our solutions here. They originate in an 
underlying symmetry, continue to the verifiable correct limits and the energy predictions 
based on them for arbitrary coupling constant values other than the tuned values are 
demonstrably correct. 

The accomplishments of this work can be summed up as follows. QES problems 
have been extensively studied in the literature and have generally been considered to 
be of limited utility. We have demonstrated that this is indeed not so. They provide 
meaningful estimates of energy eigenvalues for other problems that are not QES. The 
procedure is conceptually sound, avoids troublesome questions such as those pertaining 
to normalszabihty and the nature of small-parameter expansions. The method works 
for any ievei and any anharmonicity in the cases considered. At the same time, 
approximate polynomial wavefunctions related to underlying symmetry groups obtain 
as viable substitutes for the exact wavefunctions that are not avai!able. Given the 
computational facilities, very accurate numerical resiilts can be obtained. Accuracies 
of about one part in 10'' have been demonstrated and greater accuracies are clearly 
achievable. On the practical side the method works on essentially the same lines as 
the Hill determinant approach so that the practical methodology of the latter comes 
in quite tzandy. For useful results both methods require roots of very large-size 
determinants. However, in both cases the determinants have simple structures 
(tridiagonal form in the principal cases discussed) that substantially facilitate the 
evaluation of roots. We find that for large-size determinants the Hill determinant 
approach produces superior numerical results. The difference arises due to the presence 
of :ron-zero auxiliary contributions in our case. On the other hand tne Kill approach 
requires a separate proof OF normaiizabiiiiy and the wavefunctions Formaiiy remain 
power series functions which can never be exact as far as any practical calculation goes. 

On the computational side there are a host of other methods which a;e decisively 
more efficient whenever they apply. We briefly review a selected few. Following a 
chronological sequence we begin with the elegant approach of intermediate Hamil- 
tonians due to Bazley and Fox 1171. It provides excellent lower bounds extremely 
efficiently for low-lying states of anharmonic and other potentials. The conceptual 
basis of this method is very transparent and very small-size (-S x 5 )  determinants are 
needed. Results obtained for weak and medium anbarmonicities are very impressive 
indeed. The Hill determinant approach 19, IO] has already been noted. Next comes 
the two-step approach of Cheng-Shiung Hsue and Chern [I81 using coherent states, 
which is also able to extract very accurate estimates using small-size determinants 
(-20x20). They have also discussed all the three main problems r e  have considered. 

bound. Another powerful approach is the method of moments due to Bessis and Handy 
[19]. Again good results (lower bounds) obtain with ease. The method needs special 
adaptations to treat excited states and the Killingbeck problem has also heen examined 
using this approach [20]. From a numerical point of view and to the best of our 
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knowledge the most striking accuracies using small-size detenninants (7 x 7) are obtain- 
able through the rational function approach of Fernandez el a/ [21], which applies to 
a wide variety of potentials, although double-well porentials have not been expliciily 
mentioned by the authors. The method successively obtains tighte: ana tighter upper 
and lower bounds as the determinant size increases in steps of one. As an exampie, 
using 7 x 7 determinants the first four quartic levels are estimated to one part in 10". 
The authors have been unable to provide a theoretical reasm for the emergence of 
successive upper and lower bounds. 

A general observation concerning the methods of the previous paragraph is in 
order. Unlike oui and the Hill determinant-based approaches the above methods 
involve general N x N determinants. Thus, whereas their computational superiority 
for the case of low-lying states is beyond doubt, the same need not be true for the 
case of highly excited states such as the 100th level Unfortunately, these authors have 
not shown such cases and we are unable to add anything more in relation to this 
question. 

The above has been a very limited review and a number of other useful approaches 
such as Pade-Borel summability techniques for the weak coupling case and 1 / N  
expansion-based methods, etc, have been left unattended. However, their accomplish- 
ments can be traced through [l ,  10,131. 

Finally, we note that we are in the process of applying the present method, which 
may be termed as the method of auxiliary Hamiltonians, to the Coulomb-diamagnetic 
and the Coulomb-plus linear potential problems. Preliminary results in the Coulomb- 
diamagnetic case indicate that an excellent demiption of the Coulombic and quasi- 
Landau regimes obtains. The details of these and some other applications will be 
discussed elsewhere. 
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